MATH 2028 Honours Advanced Calculus II 2024-25 Term 1

Problem Set 6

due on Dec 2, 2024 (Monday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. **No late homework will be accepted.**

Notations: All curves, surfaces and vector fields are inside \mathbb{R}^3 . We will use U to denote an open subset of \mathbb{R}^3 .

Problems to hand in

- 1. Compute the flux $\int_{S} (\nabla \times F) \cdot \vec{n} \ d\sigma$ where
 - (a) $F(x,y,z) = (x^2 + y, yz, x z^2)$ and S is the triangle defined by the plane 2x + y + 2z = 2 inside the first octant, oriented by the unit normal pointing away from the origin.
 - (b) F(x, y, z) = (x, y, 0) and S is the paraboloid $z = x^2 + y^2$ inside the cylinder $x^2 + y^2 = 4$, oriented by the upward pointing normal.
- 2. Let $F(x, y, z) = (ye^z, xe^z, xye^z)$ and C be a simple closed curve which is the boundary of a surface S. Show that $\int_C F \cdot d\vec{r} = 0$.
- 3. Find $\iint_S F \cdot \vec{n} \, d\sigma$ where
 - (a) $F(x, y, z) = (2x, y^2, z^2)$ and S is the unit sphere centered at the origin, oriented by the outward unit normal;
 - (b) F(x,y,z) = (x+y,y+z,x+z) and S is the tetrahedron bounded by the coordinate planes and the plane x+y+z=1, oriented by the outward unit normal.
- 4. Given a simple closed curve C that bounds a region D in \mathbb{R}^2 and a smooth vector field $\vec{F} = (P, Q)$, the Flux of \vec{F} across C is defined as $\oint_C \vec{F} \cdot \hat{n} ds := \oint_C -Q dx + P dy$. Deduce the following 2-dimensional version of divergence theorem from Green's theorem:

$$\oint_C \vec{F} \cdot \hat{n} ds = \iint_D \nabla \cdot \vec{F} \, dA$$

- 5. Let $\omega = y^2 dy \wedge dz + x^2 dz \wedge dx + z^2 dx \wedge dy$, and M be the solid paraboloid $0 \le z \le 1 x^2 y^2$. Evaluate $\int_{\partial M} \omega$ directly and by applying Stokes' Theorem.
- 6. Let $M = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 \le x_4 \le 1\}$, with the standard orientation inherited from \mathbb{R}^4 . Evaluate

$$\int_{\partial M} (x_1^3 x_2^4 + x_4) \ dx_1 \wedge dx_2 \wedge dx_3.$$

Suggested Exercises

1. A function $f: U \to \mathbb{R}$ is said to be harmonic if $\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$.

- (a) Prove that the functions $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ and $f(x, y, z) = x^2 y^2 + 2z$ are harmonic on their maximal domain of definition.
- (b) Show that $\nabla \cdot (\nabla f) = 0$ if f is harmonic.
- 2. Prove that $F(x,y,z) = \frac{(x,y,z)}{(x^2+y^2+z^2)^{3/2}}$ satisfies $\nabla \cdot F = 0$ and $\nabla \times F = 0$ on $\mathbb{R}^3 \setminus \{0\}$.
- 3. Prove the following identities:
 - (a) $\nabla \times (\nabla f) = 0$ for any C^2 function $f: U \to \mathbb{R}$;
 - (b) $\nabla \cdot (\nabla \times F) = 0$ for any C^2 vector field $F: U \to \mathbb{R}^3$.
 - (c) $\nabla \cdot (F \times G) = G \cdot (\nabla \times F) F \cdot (\nabla \times G)$ for any vector fields F, G.
 - (d) $\nabla \cdot (\nabla f \times \nabla g) = 0$ for any functions f, g.
- 4. Verify Stokes theorem for
 - (a) F(x,y,z) = (z,x,y) and S defined by $z = 4 x^2 y^2$ and $z \ge 0$;
 - (b) F(x, y, z) = (x, z, -y) and S is the portion of the sphere of radius 2 centered at the origin with $y \ge 0$;
 - (c) $F(x,y,z) = (y+x,x+z,z^2)$ and S is the portion of the cone $z^2 = x^2 + y^2$ with $0 \le z \le 1$.
- 5. Let C be a closed curve which is the boundary of a surface S. Prove that
 - (a) $\int_C f \nabla g \cdot d\vec{r} = \iint_S (\nabla f \times \nabla g) \cdot \vec{n} d\sigma$;
 - (b) $\int_C (f\nabla g + g\nabla f) \cdot d\vec{r} = 0.$
- 6. Find $\iint_S F \cdot \vec{n} \ d\sigma$ where
 - (a) $F(x,y,z) = (x^3,y^3,z^3)$ and S is the unit sphere centered at the origin, oriented by the outward unit normal;
 - (b) F(x, y, z) = (x + y, y + z, x + z) and S is the paraboloid $z = 4 x^2 y^2$, $z \ge 0$, oriented by the upward unit normal;
 - (c) F(x, y, z) = (2x, 3y, z) and S is the closed surface consisting of the cylinder $x^2 + y^2 = 4$ and the planes z = 1, z = 3, oriented by the outward unit normal;
- 7. Suppose Ω is the interior of a closed surface S. Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be C^2 functions. Prove the following *Green's identities*:
 - (a) $\iint_{S} (f \nabla g) \cdot \vec{n} \ d\sigma = \iiint_{\Omega} (f \Delta g + \nabla f \cdot \nabla g) \ dV;$
 - (b) $\iint_S (f \nabla g g \nabla f) \cdot \vec{v} d\sigma = \iiint_{\Omega} (f \Delta g g \Delta f) dV;$

Here, $\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$.

- 8. Let $\Omega \subset \mathbb{R}^3$ be a bounded open subset with boundary $\partial \Omega = S$ which is a closed surface, oriented by the outward unit normal \vec{n} . Let $F(x,y,z) = \frac{(x,y,z)}{(x^2+y^2+z^2)^{3/2}}$. Assume that $0 \notin S$.
 - (a) Suppose that $0 \notin \Omega$. Show that

$$\iint_{S} F \cdot \vec{n} \ d\sigma = 0.$$

(a) Suppose that $0 \in \Omega$. Show that

$$\iint_{S} F \cdot \vec{n} \ d\sigma = 4\pi.$$

- 9. Can there be a function f so that df is the given 1-form ω (everywhere ω is defined)? If so, find f.
 - (a) $\omega = y \, dx + z \, dy + x \, dz$
 - (b) $\omega = (x^2 + yz) dx + (xz + \cos y) dy + (z + xy) dz$
 - (c) $\omega = \frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy$
 - (d) $\omega = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$
- 10. For each of the following k-forms ω , can there be a (k-1)-form η (defined wherever ω is) so that $d\eta = \omega$?
 - (a) $\omega = z \, dx \wedge dy$
 - (b) $\omega = z \, dx \wedge dy + y \, dx \wedge dz + z \, dy \wedge dz$
 - (c) $\omega = x \, dx \wedge dy + y \, dx \wedge dz + z \, dy \wedge dz$
 - (d) $\omega = (x^2 + y^2 + z^2)^{-1} (x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)$
- 11. In each of the following, compute the pullback $g^*\omega$ and verify that $g^*(d\omega) = d(g^*\omega)$:
 - (a) $g(v) = (3\cos 2v, 3\sin 2v), \ \omega = -y \ dx + x \ dy$
 - (b) $g(u, v) = (\cos u, \sin u, v), \omega = z dx + x dy + y dz$
 - (c) $g(u,v) = (\cos u, \sin v, \sin u, \cos v), \ \omega = (-x_3 dx_1 + x_1 dx_3) \land (-x_2 dx_4 + x_4 dx_2)$

Challenging Exercises

1. Let $F: U \to \mathbb{R}^3$ be a C^1 vector field defined on an open subset $U \subset \mathbb{R}^3$. Fix $p \in U$. Denote $B_r(p)$ be the closed ball of radius r > 0 centered at p and $S_r(p) = \partial B_r(p)$ be the sphere of radius r > 0 centered at p, with outward pointing unit normal \vec{n} . Prove that

$$(\nabla \cdot F)(p) = \lim_{r \to 0} \frac{1}{\operatorname{Vol}(B_r(p))} \iint_{S_r(p)} F \cdot \vec{n} \ d\sigma.$$

2. Let $S \subset \mathbb{R}^3$ be a surface and $F: U \to \mathbb{R}^3$ be a C^1 vector field defined on an open set $U \subset \mathbb{R}^3$ containing S. Fix $p \in S$. Denote $D_r(p) := \{x \in S \mid |x-p| \le r\}$ and $C_r(p) = \{x \in S \mid |x-p| = r\}$. Suppose S is oriented by the unit normal \vec{n} and so is $C_r(p)$ as the boundary of $D_r(p)$ (which you can assume to be C^1). Prove that

$$(\nabla \times F)(p) \cdot \vec{n}(p) = \lim_{r \to 0} \frac{1}{\operatorname{Area}(D_r(p))} \int_{C_r(p)} F \cdot d\vec{r}.$$